dc.contributor.author Bourgeois, Frédéric
dc.contributor.author Mohnke, Klaus
dc.date.accessioned 2025-06-20T09:55:31Z
dc.date.available 2025-06-20T09:55:31Z
dc.date.issued 2004-03-19
dc.description.abstract We study the coherent orientations of the moduli spaces of holomorphic curves in Symplectic Field Theory, generalizing a construction due to Floer and Hofer. In particular we examine their behavior at multiple closed Reeb orbits under change of the asymptotic direction. The orientations are determined by a certain choice of orientation at each closed Reeb orbit, that is similar to the orientation of the unstable tangent spaces of critical points in finite--dimensional Morse theory.
dc.description.volume 248
dc.identifier.arxiv http://arxiv.org/abs/math/0102095
dc.identifier.doi 10.1007/s00209-004-0656-x
dc.identifier.doi 10.48550/arxiv.math/0102095
dc.identifier.handle 2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/127764
dc.identifier.issn 0025-5874
dc.identifier.issn 1432-1823
dc.identifier.openaire doi_dedup___:fe33cce969b3356c1727c102964e60db
dc.identifier.uri https://trapdev.rcub.bg.ac.rs/handle/123456789/1354234
dc.openaire.affiliation Humboldt-Universität zu Berlin
dc.openaire.collaboration 1
dc.publisher Springer Science and Business Media LLC
dc.rights OPEN
dc.rights.license Springer TDM
dc.source Mathematische Zeitschrift
dc.subject symplectique et de poisson
dc.subject Géométrie riemannienne
dc.subject [MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]
dc.subject [MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG]
dc.subject Mathematics - Symplectic Geometry
dc.subject Topologie algébrique
dc.subject FOS: Mathematics
dc.subject Symplectic Geometry (math.SG)
dc.subject Géométries différentielle et infinitésimale
dc.subject topologie différentielle
dc.subject intégrale
dc.subject.fos 01 natural sciences
dc.subject.fos 0101 mathematics
dc.title Coherent orientations in symplectic field theory
dc.type publication

Collections

Loading...